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Abstract. Analyzing 1-day vulnerabilities is a critical task in software
security, but it is often challenging to reproduce the bugs due to the
lack of information about the vulnerabilities. In this paper, we discuss
how Large Language Models (LLMs) can be leveraged to generate in-
puts that trigger specific vulnerabilities. There are two main challenges:
LLMs need to (i) correctly analyze the target vulnerability, and (ii) iden-
tify relevant fields to generate useful program inputs. We address these
challenges by using a systematic approach with a three-stage prompt-
ing, where we provide necessary information at each stage and guide the
LLM to ultimately generate an input for reproducing the target bug.
With these LLM-generated program inputs, we perform directed fuzzing
targeting the known vulnerabilities in real-world programs and show that
our strategy can effectively generate useful inputs for vulnerability re-
production.
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1 Introduction

Analyzing known vulnerabilities, commonly referred to as 1-day vulnerabilities,
is imperative in software security. By analyzing the issued patches for 1-day
vulnerabilities, attackers can identify existing vulnerabilities and pose threats to
software users who have not yet applied the patches [21]. Therefore, analyzing
these vulnerabilities is crucial to quickly devise countermeasures.

However, 1-day vulnerability analysis is challenging because finding the pro-
gram inputs that trigger the vulnerabilities requires considerable effort and
time [16]. This process necessitates a high level of understanding of the pro-
gram and input formats, and manipulating inputs to meet complex constraints
demands substantial expertise.

Despite numerous studies on automated analysis of 1-day vulnerabilities, ef-
ficiency limitations still persist. Directed fuzzing [2,8,9] is a promising technique
for reproducing a known vulnerability by gradually mutating the input to reach
the target location. However, recent studies [10,11] show that directed fuzzers
suffer from quickly generating inputs for vulnerabilities that do not fit the heuris-
tics they employ. Dynamic symbolic execution [4] and its variant, named directed
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symbolic execution [13], are also effective in reproducing bugs, but they do not
scale well for large programs due to the path explosion problem.

Therefore, we propose a novel technique based on large language models for
an efficient and automatic 1-day vulnerability analysis. As large language models
generate answers based on learned data, they do not rely on specific heuristics.
Notably, they are capable of performing various tasks previously done by humans
in a short time due to their extensive training on large datasets [3, 5].

However, there are several challenges in applying large language models for
program input generation. First, the LLM may fail to understand the target
vulnerability and its root cause, thus generating irrelevant inputs. Furthermore,
even if the model understands the vulnerability, it may not be able to correctly
identify which input fields are related to the vulnerability.

This paper addresses the aforementioned challenges using a systematic three-
stage prompting method (§3) along with fuzzing. The key intuition of our ap-
proach is to use a series of prompts that build on each other to guide the LLM
in generating inputs that are close enough to the bug-triggering inputs, so that
those inputs can be used as initial seeds for directed fuzzing. First, we provide
the LLM with information regarding the target vulnerability to help understand
the root cause of the bug. Then, we ask the LLM to identify the fields related
to the vulnerability based on the information obtained from the previous stage.
In the final stage, we provide the model with a small program input (§3.3) and
instruct the model to generate the bug-triggering input by adding or modify-
ing the fields identified in the previous stage. In this way, we break down the
challenging problem of finding the bug-triggering input into multiple smaller
problems, such that the LLM can progress in a step-wise fashion by combining
the information given in the prompts with the answers from previous stages.
The generated inputs are not necessarily the exact bug-triggering inputs due to
the limitations of the LLMs, but we expect them to serve as good initial seeds
for directed fuzzing.

To evaluate the effectiveness of the proposed method, we apply our technique
to 15 real-world programs with known vulnerabilities. From this experiment, the
LLM successfully analyzes the cause of vulnerabilities and identifies the related
fields in 9 (60%) and 7 (46%) programs, respectively. Moreover, using the inputs
modified by the LLM as initial seeds for directed fuzzing improved the fuzzing
results in 41.7% of the programs while showing the same performance in 36.5%
and worse performance in 21.8% of the programs. Additionally, we conducted
various case studies to further analyze the results and investigate the limitations
of our LLM-based strategy.

In summary, our contributions are as follows:

— We propose a novel strategy that uses LLMs to generate program inputs for
bug reproduction.

— We address the challenges of applying LLMs in bug-triggering input gener-
ation through a systematic three-stage prompting procedure.

— We evaluate our strategy by generating inputs to reproduce the known vul-
nerabilities in real-world programs and using these LLM-generated inputs as
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the initial seeds for directed fuzzing. We measure the performance improve-
ment in fuzzing to show the effectiveness of our technique.

— We publicize our code, prompts, and experimental results in support of open
science: (link will be provided upon acceptance).

2 Related Work

2.1 1-day Vulnerability Reproduction

There have been several studies on reproducing 1-day vulnerabilities from patched
binaries. 1dVul [19] combines directed fuzzing and directed symbolic execution
to effectively reach a target location in the binary. It heuristically identifies tar-
get locations by analyzing the binary diff between the vulnerable and patched
binaries. 1dFuzz [22] improves upon 1dVul by locating target locations using
a well-known code pattern of security patches, named Trailing Call Sequence
(TCS). Both approaches use patched binaries to reproduce 1-day vulnerabilities,
while our study leverages source-level patches to direct the LLM to generate in-
puts that reproduce known vulnerabilities. Therefore, ours is orthogonal to these
binary-level approaches and can be complementary to them.

Although not directly related to reproducing 1-day vulnerabilities, there are
studies that use directed fuzzing to reproduce bugs from patches [23,24]. Since
our study mainly focuses on generating seeds for fuzzing, our approach can be
used in conjunction with these techniques to reproduce known vulnerabilities.

2.2 Input Generation with LLM

Recent research has been actively exploring the use of large language models to
generate or modify program inputs for fuzzing. However, they primarily focus on
the LLMs’ ability to generate well-formed inputs to find arbitrary bugs, while our
study focuses on generating inputs specifically tailored to known vulnerabilities.
Furthermore, existing studies use relatively simple prompts to generate inputs
without considering the complexity of the vulnerabilities.

Asmita et al. [1] demonstrated the effectiveness of using LLMs to generate
diverse initial seeds tailored to the target’s requirements for testing embedded
applications such as BusyBox. However, they primarily focused on generating
initial inputs that conform to the input format of the program by simply pro-
viding the name of the program to the LLM. In contrast, our study provides
prompts with vulnerability-related information, such as CVE descriptions and
patched source code.

ChatAFL [14] improved the performance of protocol fuzzing by having LLM
create inputs that alter the initial input values and states of the server program.
However, ChatAFL does not utilize the information provided in the prompts
in subsequent prompts, which could cause the LLM to generate inaccurate or
irrelevant responses.

Fuzz4 All [20] utilized LLMs to generate and modify inputs for fuzzing systems
that take various programming languages as inputs. Similarly to our technique,
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Fig. 1: Overview of 3-stage process.

they include official documentation and related code in their prompts. However,
Fuzz4All relies on the LLM’s learning capabilities to directly generate inputs
without a staged approach, which could result in the model generating irrelevant
responses. In contrast, our strategy employs a three-stage prompting method to
sequentially extract essential information for generating inputs highly relevant
to the vulnerabilities.

In summary, unlike the aforementioned studies, we use more complex prompts
that include vulnerability-related information to enable the LLMs to generate
more sophisticated and directed responses. Additionally, we conduct a sequential
and systematic prompting process, extracting necessary information step-by-step
to ultimately generate program inputs that are closely related to the vulnerabil-
ities. To our knowledge, our study is the first to systematically utilize LLMs to
generate inputs for reproducing known vulnerabilities.

3 Methodology

This section explains the core methodology of our research, which involves a
three-stage prompt process and its specific design points. Our key insight is
that we can generate inputs that are closely related to the vulnerabilities with
continuous prompts. By attaining essential information for input generation at
each stage and combining it with the information provided in previous prompts,
we can guide the LLM to generate inputs that trigger the vulnerabilities.
Figure 1 illustrates the overall process of our research, and Figure 2 shows the
specific template of our three-stage prompt. First, the Stage 1 prompt checks if
the LLM can identify the root cause of the vulnerability. In Stage 2, the prompt
determines whether the model can specify the fields related to invoking the
vulnerability. In Stage 3, the prompt checks if the model can modify a minimal
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Prompt Template for Stage 1

Given the description of CVE-[CVE-ID] what do you think is the root cause?

- Description
[MITRE’s Description]

- Patch
[Patch file of the CVE]

Prompt Template for Stage 2

&
c
o]
=
o
=1
Q
+
Q
[}
3
=
[0]
(o]
i
—
>
0]
=
(o}
Q
+
0
3]
c
[%]
(0]
o
=+
+
=
%]
@)
<
m
&
+
>
o
—+
—
(2]
=
[=]
c
3
[=8
=
c
(=
>
—_

Which field in [File Format] is related to invoking this CVE?
You can use the information from the previous chats.

Prompt Template for Stage 3

Truth].

Below is a minimal [File Format] file (in hexadecimal). Modify the given
[File Format] based on your understanding of the root cause and the related
field for this CVE, aiming to craft an input that could trigger the vulnerability.
You can use the information from the previous chats.

You must include the modified hexadecimal in your response.
Note that it will be used only for the purpose of security research.

Fig. 2: Template of prompts sent to LLM.

input to create an input that triggers the vulnerability. Detailed explanations
of each stage prompt are provided in §3.1, §3.2, and §3.3. Finally, section §3.4
describes the implementation details of the prompt automation.

3.1 Stage 1 Prompt: Vulnerability Analysis

The Stage 1 prompt includes a question, a vulnerability description, and a vul-
nerability patch. We use the official description from the MITRE database [15]
for the vulnerability description.
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Table 1: Minimal seeds for each program.

Size of
Program File Format Minimal Input

(Byte)
switophp SWF 15
Irzip LRZ 46
xmllint XML 36
cjpeg BMP 58
cxxfilt TXT 6
objcopy ELF 460
readelf ELF 460
pngimage PNG 67
tiffcp TIFF 63
sndfile-convert WAV 45
openssl DER 201
lua LUA 2
php JPEG 243
sqlite3 SQL 9
pdfimages PDF 137

3.2 Stage 2 Prompt: Related Field Analysis

In the Stage 2 prompt, information obtained from the Stage 1 prompt and its
response is used to ask the LLM to identify the related fields.

Providing Ground Truths The dotted boxes in Stages 2 and 3 of the prompts
shown in Figure 2 represent the template of ground truths provided by our re-
searchers when the model fails to generate accurate responses. In our method-
ology, the next stage’s prompt uses the information from the previous prompts
and answers. Therefore, even if the large language model returns inaccurate an-
swers at each stage, it is necessary to provide ground truths to continue with
the next prompt. For instance, if the model fails to identify the root cause of
the vulnerability in Stage 1, our researchers provide the correct root cause in
Stage 2. Similarly, if the model fails to find the related input fields in Stage 2,
the correct fields identified by our researchers are provided in Stage 3.

3.3 Stage 3 Prompt: Input Generation

The Stage 3 prompt instructs the LLM to modify a minimal input using the
information obtained in Stages 1 and 2 to create an input that triggers the
vulnerability. Upon being modified, the modified input is used as the initial
seed for directed fuzzing to verify if the input generated by the model helps in
triggering the vulnerability.
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Generating Minimal Inputs To find out if the large language model can
generate inputs that trigger vulnerabilities by modifying the given inputs, we
use minimal inputs in Stage 3. In this study, we define a minimal input, as the
smallest input that allows the program to run without any warnings or errors.
For example, in the case of the tiffcp program that accepts TIFF files, the
minimal input would include the Image File Header (IFH) and four necessary
entries in the Image File Directory (IFD).

Minimal inputs were created for each input format used in the vulnerabilities.
To create the minimal inputs, we first identified the necessary fields required for
the program to run normally by analyzing the source code of the programs.
Then, we created minimal inputs containing these fields. For example, for the
tiffcp program, we found that if the StripByteCounts entry is missing, the
TIFFReadDirectory function generates a warning. Therefore, the minimal input
for a TIFF file includes this entry to ensure the program runs without warnings.

The sizes of the generated inputs are generally below 100 bytes, with the
largest input being an ELF file of 460 bytes. The specific sizes of the minimal
inputs are summarized in Table 1.

Prompt Engineering Given the nature of security-related prompts, there were
cases where the large language model refused to generate inputs in the third
stage due to ethical concerns. To address this, we employed prompt engineering
in Stage 3 to guide the model to modify the minimal input, as shown in Figure 2.

3.4 Prompt Automation

To automate the prompts, we used the Chat Completions API [18] provided by
OpenAl to send prompts to the LLM. Using the templated prompts shown in
Figure 2, vulnerability-specific information was added and sent automatically.
After querying each stage, the correctness of the answers generated by the LLM,
as determined by the researchers, was used to decide whether to provide the
ground truths in the next stage prompt. Additionally, the prompts and responses
from the previous stages were saved and sent to the model along with the next
stage’s prompt.

4 Evaluation

In this section, we evaluate our methodology to answer the following research
questions.

RQ1. Can an LLM determine the root cause of the vulnerability?

RQ2. Can an LLM identify the input fields related to the vulnerability?
RQ3. Can an LLM modify minimal inputs?

RQ4. How effective are the modified inputs at triggering vulnerabilities?
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Table 2: Benchmark programs.

Project Program Version CVE Type
Ming swftophp 0.4.7 2016-9827 BOF
Lrzip Irzip 0.631 2018-11496 UAF
Libxml2 xmllint 2.9.4 2017-9047 BOF
Libjpeg cipeg 1.5.90 2018-14498 BOF
Binutils cxxfilt 2.6 2016-4487 ND
Binutils objcopy 2.8 2017-8393 BOF
Binutils readelf 2.9 2017-16828 10
Libpng pngimage 1.6.35 2018-13785 10
LibTIFF tiffcp 4.0.7 2016-10269 BOF
libsndfile sndfile-convert 1.0.28 2018-19758 BOF
OpenSSL openssl 1.1.0c 2017-3735 BOF
Lua lua 5.4.0 2020-24370 10
PHP php 7.3.6 2019-11041 BOF
SQLite sqlite3 3.30.1 2019-19923 ND
Poppler pdfimages 0.73.0 2019-7310 BOF

4.1 Evaluation Setup

We selected 15 open-source programs that receive 14 different input formats as
the benchmark for our evaluation. The programs were chosen from a commonly
used fuzzing benchmark [7] and benchmarks from previous directed fuzzing pa-
pers [2,8,9]. We randomly selected one vulnerability for each program, resulting
in a total of 15 vulnerabilities for the experiment. Detailed information about
the benchmark is summarized in Table 2. We used GPT-4 Turbo [17] as the
large language model. To mitigate the randomness of the LLM, we repeated the
experiment 10 times per program.

The success of Stages 1 and 2 was determined by comparing the responses
generated by the LLM with the detailed answers about the vulnerabilities ana-
lyzed by our research team. Since the root causes of the vulnerabilities were made
up of sentences, it was necessary to understand the responses before judging their
success. In such cases, the responses generated by the LLM were evaluated based
on the subjective understanding of the researchers. For related fields, the suc-
cess was objectively determined by checking if the fields generated by the LLM
matched those identified by our researchers.

Considering that the large language model often does not modify the minimal
input in Stage 3 due to ethical reasons, the experiment was repeated up to
100 times until 10 modified inputs were generated. However, despite prompt
engineering, the LLM only returned partially modified inputs for the objcopy
and readelf programs, which take large and complex ELF structures as input,
even after 100 prompts in Stage 3. For these programs, our researchers applied
the partial modifications to the minimal inputs manually, completing 7 and 10
initial seeds for fuzzing, respectively.
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Table 3: Result of each stages.

Programs Stage 1 Stage 2 Stage 3
(Success Rate) (Success Rate) (No. of Prompts)
switophp 3/10 10 / 10 43
Irzip 0/10 0/ 10 10
xmllint 10 / 10 9 /10 12
cjpeg 6 /10 0/10 10
cxxfilt 0/10 0/ 10 13
objcopy 10 / 10 9/ 10 100
readelf 0/10 0/ 10 100
pngimage 10 / 10 6 /10 17
tiffep 0/ 10 0/ 10 24
sndfile-convert 0/10 0/ 10 21
openssl 10 / 10 10 / 10 100
lua 10 / 10 10 / 10 15
php 10 / 10 0/ 10 16
sqlite3 10 / 10 10 / 10 10
pdfimages 0/10 0/10 10
Total 9 /15 (60%) 7/ 15 (46.7%) 12 / 15 (80%)

To evaluate the generated inputs, we used SelectFuzz (commit 6da35e0d) [12]
as a directed fuzzer and AFL++ (v4.07¢) [6] as an undirected fuzzer. For each
program, 5 out of the 10 modified inputs were selected and fuzzed five times for
24 hours each. The selected inputs included those with the highest and lowest
code coverage and three randomly chosen inputs. We ran the experiments on the
server machine with 88 Intel Xeon E5-2699 v4 (2.2GHz) CPU cores and 512GB
of memory. Each fuzzing session was run in an isolated Docker container with
one core and 4GB of memory assigned. A total of 40 fuzzing sessions were run
simultaneously, utilizing 40 out of the 88 logical cores.

4.2 Root Cause Analysis

Table 3 shows the evaluation results for each stage. Out of 15 programs, the
LLM successfully identified the cause of the vulnerability in more than half of
the attempts for 9 programs (60%). This shows the LLM’s ability to infer the
root cause of vulnerabilities based on the provided information and patch details.
Compared to manual analysis by humans, the high success rate of the LLM
suggests a high potential for vulnerability analysis. With further advancements
in LLMs, it is expected that vulnerability analysis will become more accurate.
The results showed that the majority of the LLM’s answers heavily relied on
the vulnerability descriptions and patch information provided in the prompts.
For instance, in the case of CVE-2018-11496, the incorrectly accepted erroneous
vulnerability information listed by MITRE and returned unrelated information
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as the root cause of the vulnerability. Similarly, for CVE-2016-4487, multiple
vulnerabilities were patched simultaneously in one commit, leading to irrelevant
information being included in the patch data provided to the model. As a result,
the model struggled to cherry-pick relevant information pertinent to CVE-2016-
4487 and failed to pinpoint the root cause. This highlights the importance of
providing accurate vulnerability information and patches to enhance the infer-
ence capabilities of the LLMs.

4.3 Related Fields Identification

In the second stage, the LLM successfully identified the fields related to invoking
the vulnerability in more than half of the attempts for 7 out of 15 programs
(46.7%). It is remarkable that the LLM could identify related fields based on pre-
learned data and the small amount of information provided in the prompts. This
shows the potential for higher success rates with more comprehensive training
data in the future.

By analyzing the responses that LLM failed in this stage, we found that the
model often struggled to match variables in the patches to the corresponding
input format fields. For example, in the case of CVE-2019-11041, while the model
recognized that the Thumbnail->size variable in the patch was relevant to the
vulnerability, it could not match which field in the JPEG format corresponded
to this variable. Additionally, when multiple fields were related to invoking a
vulnerability, the model frequently failed to identify all the relevant fields. For
CVE-2016-10269, which required three fields to trigger the vulnerability, the
model only identified one of them. This shows that the model has difficulties in
matching variables in the code to input format fields and identifying multiple
related fields.

4.4 Modification of Minimal Inputs

In the third stage, the LLM successfully generated 10 modified inputs for 12
out of 15 programs (80%). However, despite prompt engineering efforts (§3.3),
there were cases where the model refused to modify the minimal inputs due
to ethical concerns. For instance, for CVE-2017-3735, which takes DER files as
input format, only one modified input was generated after 100 prompt attempts.
Similarly, for vulnerabilities with ELF inputs, no modified inputs were returned
even after 100 prompts. Conversely, vulnerabilities with relatively simple input
formats yielded 10 modified inputs within about 30 prompts. This indicates that
the model has difficulty modifying the minimal inputs for programs with complex
and lengthy input formats.

4.5 Effectiveness of Generated Inputs

Table 4, and Table 5 reveal the fuzzing results using inputs generated by the
LLM as initial seeds. The numbers represent the median time taken to find the
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Table 4: Fuzzing results of AFL++-.

LLM-generated Inputs
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switophp 13 (5) 14 (5) 50 (5) 15 (5) 7 (5) 21 (5)
Irzip 18 (5) 4527 (5) 2569 (5) 1964 (5) 4799 (5) 4513 (5)
xmllint N.A. (0) N.A. (0) N.A. (0) N.A. (0) 65393 (4) N.A. (1)
cjpeg 80769 (3) 5487 (4) N.A. (1) 25 (5) 34405 (4) 7175 (5)
exxfilt 1108 (5) 581 (5) 508 (5) 172 (5) 662 (5) 895 (5)
objcopy 1005 (5) 1233 (5) N.A. (1) N.A. (2) N.A. (2) N.A. (0)
readelf N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
pngimage N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
tiffep N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
sndfile-convert N.A. (0) 227 (5) 76 (5) 674 (5) 192 (5) 12 (5)
openssl N.A. (0) N.A. (0) - - - -
lua N.A. (0) 13558 (5) N.A. (0) 44 (5) 174 (5) 0 (5)
php 2839 (5) 9873 (5) N.A. (2) N.A. (1) 30820 (3) 13772 (4)
sqlite3 N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
pdfimages N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0)

Table 5: Fuzzing results of SelectFuzz.
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swftophp 45 (5) 13 (5) 983 (5) 50 (5) 27 (5) 20 (5)
Irzip 15 (5) 7065 (5) 20796 (5) 2043 (5) 3327 (5) 5923 (5)
xmllint N.A. (0) N.A. (1) N.A. (0) N.A. (0) N.A. (1) N.A. (0)
cjpeg 32520 (3) 100 (5) N.A. (0) 37 (5) 187 (5) 704 (5)
cxxfilt 695 (5) 649 (5) 1242 (5) 498 (5) 1048 (5) 514 (5)
objcopy 1392 (5) 3006 (5) N.A. (1) N.A. (1) N.A. (0) N.A. (0)
readelf - - - - - -
penagifnage N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
tiffcp N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
sndfile-convert N.A. (0) N.A. (0) N.A. (0) N.A. (0) 354 (5) N.A. (0)

nssl - - - - - -
TJ): ° N.A. (0) 1099 (5) N.A. (0) N.A. (1) N.A. (1) 0 (5)

h - - - - - -
Sql?m3 N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0)
pdfimages N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0) N.A. (0)

vulnerability (i.e., Time-to-Exposure (TTE)), where "N.A." denotes that the
vulnerability was not found within the 24-hour time limit in more than half of
the repetitions. The results marked with a dash (-) indicate that the fuzzer failed
to perform static analysis which made fuzzing infeasible. Specifically, SelectFuzz
failed for readelf, openssl, and php programs.

There was a promising result when fuzzing lua with random-3 input as the
initial seed. The vulnerability was triggered immediately, indicating that the
model succeeded in generating the text-formatted input using the detailed vul-
nerability descriptions and patches.

When fuzzing with the generated inputs by LLM as initial seeds, AFL+-+
and SelectFuzz succeeded in reproducing the vulnerability faster for 33% (5/15)
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and 50% (6/12) of the programs, respectively, compared to using minimal input
values. Except for the 1lrzip case, the inputs generated by the LLM improved
fuzzing performance for programs with small minimal inputs, such as BMP and
WAV. However, it was found to be less effective for modifying complex input for-
mats like ELF and DER. This is because, despite knowing the fields related to
invoking the vulnerability, it was challenging to determine which part of the min-
imal input represented in hexadecimal corresponded to those fields. In the cases
of CVE-2017-16828 and CVE-2017-3735, the model modified arbitrary fields in
the input file for illustrative purposes, ignoring the file format complexity.

For 1rzip, it is suspected that the lack of information on the input format
likely hindered the model’s learning process. In fact, we found the LLM modi-
fying fields unrelated to the vulnerability in 1rzip.

Additionally, it was observed that high code coverage of inputs does not
necessarily enhance fuzzing performance. There were several inputs with lower
code coverage that showed better fuzzing performance than those with high code
coverage.

4.6 Case Studies

We conducted an in-depth analysis of two programs, cjpeg and objcopy,
which showed good and bad fuzzing results. Listing 1.1 shows a partial source
code related to CVE-2018-14498. This vulnerability occurs due to reading be-
yond the allocated memory of the colormap buffer at line 40. Specifically, the
vulnerability arises when the pixel data value t, read from the input, exceeds the
maximum index of the colormap buffer. As shown in lines 5-7, this maximum
index is determined by the biClrUsed, which is also read from the input. From
line 18, since the biBitCount field from the input BMP must be 8 to enter the
vulnerable function get 8bit row, the related fields for this vulnerability are
biBitCount, biClrUsed, and the pixel data.

By analyzing the cjpeg-random-1 input, which showed good performance, we
found that the LLM modified the biBitCount value from 24 in the minimal input
to 8, allowing the execution to enter the vulnerable function. However, the LLM
did not correctly identify the location of the biClrUsed field in the minimal input
and changed other fields, causing incorrect values to be used as biClrUsed and
pixel data. Despite this, the fuzzers managed to find an input that triggered the
vulnerability within a short time by mutating the seed that enter the function
where the vulnerability exists.

Listing 1.2 shows part of the code related to the objcopy vulnerability. This
vulnerability arises from the incorrect assumption that section headers of type
SHT REL or SHT RELA in ELF files start with the names ".rel" or ".rela".
The code increases the name pointer, which points to the section header’s name,
by 4 or 5 and then uses the strcmp function to compare it with ".plt" at line
16. If the section name is shorter than 4 or 5 characters, there exist a scenario
where the code reads memory beyond the allocated space for the section name.
Therefore, the fields closely related to this vulnerability are sh_type and name.
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METHODDEF (void) start_input_bmp(
j_compress_ptr cinfo,
cjpeg_source_ptr sinfo) {

source->colormap = (*cinfo->mem->alloc_sarray) (
(j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) biClrUsed, (JDIMENSION) 3);

// omitted

METHODDEF (JDIMENSION) preload_image (
j_compress_ptr cinfo,
cjpeg_source_ptr sinfo) {

// omitted

switch (source->bits_per_pixel) {
case 8:
source->pub.get_pixel_rows = get_8bit_row;
break;
case 24:
// omitted
case 32:
// omitted
default:
// omitted
}
return (*source->pub.get_pixel_rows) (cinfo, sinfo);

}

METHODDEF (JDIMENSION) get_8bit_row(
j_compress_ptr cinfo,
cjpeg_source_ptr sinfo) {

// omitted

for (col = cinfo->image_width; col > 0; col--) {
t = GETJSAMPLE (*inptr++) ;
outptr[rindex] = colormap[0][t]l; // crash!
outptr[gindex] = colormap([1][t];
outptr[bindex] = colormap[2] [t];
outptr += ps;

// omitted
return 1;

}

Listing 1.1: Case Study of CVE-2018-14498.
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asection* _bfd_elf_get_reloc_section (asection* reloc_sec) {
. // omitted

type = elf_section_data(reloc_sec)—>this_hdr.sh_type;
if (type !'= SHT_REL && type != SHT_RELA)
return NULL;

name = reloc_sec->name;
if (type == SHT_REL)
name += 4;
else
name += 5;

if (get_elf_backend_data(abfd)->want_got_plt
&& strcmp(name, ".plt") == 0) { // crash!
. // omitted

. // omitted
return reloc_sec;

Listing 1.2: Case Study of CVE-2017-8393.

From analyzing the poorly performing objcopy-random-3 input, it was found
that the model appended hexadecimal values representing ".unexpected" to the
end of the .shstrtab section header data, which stores the names of the ELF file’s
section headers. While it is encouraging that the LLM identified the location
of the section headers’ names, the added string was too long to trigger the
vulnerability. Additionally, while it was necessary to add a section header with
the new name and set its type to SHT REL or SHT RELA, this was not done
by LLM. Crucially, the new name data was added at the location before the start
of the section headers, causing the e _shoff field, which indicates the start of the
section headers, to have an incorrect value. This made generating an input to
trigger the vulnerability infeasible.

5 Conclusion

This paper discusses how LLMs can assist in generating inputs that trigger spe-
cific vulnerabilities. Through a three-stage prompt process, we explored whether
the model could infer the root causes and the related fields of known vulnerabil-
ities. Additionally, given the root causes and related fields of the vulnerabilities,
we prompted the model to modify minimal inputs into inputs that trigger the
vulnerabilities and experimentally validated this using directed fuzzing. The eval-
uation results showed that the inputs generated by the LLM could reproduce the
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bug faster for more than 41% of the programs on average, benefitting from its
understanding of the vulnerabilities at each stage. Although we did not achieve
successful results for all programs, it is significant to find that LLMs can be
utilized in 1-day vulnerability analysis and aid in generating inputs that trigger
vulnerabilities.
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