
Short paper: Systematic Bug Reproduction with
Large Language Model

Sanghyun Park, Haeun Lee, and Sang Kil Cha

KAIST, Daejeon, Republic of Korea
{sanghyun.park, haeun.lee, sangkilc}@kaist.ac.kr

Abstract. Analyzing 1-day vulnerabilities is a critical task in software
security, but it is often challenging to reproduce the bugs due to the
lack of information about the vulnerabilities. In this paper, we explore
how Large Language Models (LLMs) can be leveraged to generate in-
puts that trigger specific vulnerabilities. There are two main challenges:
LLMs must (1) correctly analyze the target vulnerability and (2) iden-
tify relevant fields to generate meaningful program inputs. We address
these challenges through a three-stage prompting approach, where we
provide necessary information at each stage, guiding the LLM to ulti-
mately generate input for reproducing the target bug. By using these
generated inputs as seeds for directed fuzzing, we show that our strategy
can effectively generate useful inputs for vulnerability reproduction.

Keywords: bug reproduction, large language models, directed fuzzing

1 Introduction

Analyzing known (1-day) vulnerabilities is challenging because finding the pro-
gram inputs that trigger the vulnerabilities requires considerable effort and
time [17]. Specifically, this process demands a deep understanding of the pro-
gram and its input formats, along with the expertise to manipulate inputs to
satisfy complex constraints.

Despite numerous studies on automated 1-day vulnerability analysis, effi-
ciency limitations still persist. Directed fuzzing [2,9,10] is a promising technique
for reproducing known vulnerabilities by gradually mutating inputs to reach
the target location. However, recent studies [11, 12] show that directed fuzzers
struggle to quickly generate inputs for vulnerabilities that do not align with the
heuristics they employ. Dynamic symbolic execution [4, 5] and its variant, di-
rected symbolic execution [14], are effective for reproducing bugs, but they do
not scale well for large programs due to the path explosion problem.

To address these challenges, we propose a novel technique based on Large
Language Models (LLMs) for efficient and automatic 1-day vulnerability anal-
ysis. As LLMs generate outputs based on learned data, they do not rely on
specific heuristics. Notably, they are capable of performing various tasks that
previously required human expertise in a short amount of time due to their
extensive training on large datasets [3, 6].



2 Sanghyun Park, Haeun Lee, and Sang Kil Cha

There are two main challenges when using LLMs for vulnerability analysis.
First, the LLM may fail to understand the target vulnerability and its root cause.
Second, it may struggle to identify the input fields relevant to the vulnerability.

In this paper, we address these challenges using a systematic three-stage
prompting method. The key intuition of our approach is to guide the LLM
through a series of prompts that build on each other to generate inputs that can
be used in further analysis, for example, as initial seeds in directed fuzzing. To
begin, we provide the LLM with information regarding the target vulnerability
and ask the LLM for its root cause. Next, we ask the LLM to identify the fields
related to the vulnerability. Finally, we provide a small program input and in-
struct the LLM to generate a bug-triggering input by modifying or inserting the
fields identified in the previous stage. In this way, we break down the complex
problem of finding a bug-triggering input into smaller, manageable tasks, allow-
ing the LLM to progress in a step-wise fashion by combining the information
from the prompts with the answers from previous stages. Although the generated
inputs may not be the exact bug-triggering inputs due to the limitations of the
LLMs, they are expected to serve as effective initial seeds for directed fuzzing.

We implement these ideas in a framework, named LLM1dFuzz, and evaluate
its effectiveness by applying it to 15 real-world programs with known vulnerabil-
ities. The LLM successfully analyzes the causes of vulnerabilities and identifies
the related fields in 8 (53%) and 7 (47%) programs, respectively. Moreover, us-
ing the LLM-modified inputs as initial seeds for directed fuzzing improved the
fuzzing results in 37.5% of the programs while showing the same performance in
36.7% and worse in 25.8%. Our contributions are:

– We propose an LLM-based bug reproduction strategy, named LLM1dFuzz.
– We address the challenges of applying LLMs in bug-triggering input gener-

ation through a systematic three-stage prompting procedure.
– We publicize our code, prompts, and experimental results in support of open

science: https://github.com/SoftSec-KAIST/LLM1dFuzz.

2 Related Work

1-day Vulnerability Reproduction. There have been several studies on repro-
ducing 1-day vulnerabilities from patched binaries. 1dVul [20] combines directed
fuzzing and directed symbolic execution to reach a target location in the binary
effectively. It heuristically identifies target locations by analyzing the binary diff
between the vulnerable and patched binaries. 1dFuzz [22] improves upon 1dVul
by locating target locations using a well-known code pattern of security patches,
named Trailing Call Sequence. Both approaches use patched binaries to repro-
duce 1-day vulnerabilities, while our study leverages source-level patches to di-
rect the LLM to generate inputs that reproduce known vulnerabilities. Therefore,
ours is orthogonal to these binary-level approaches and can be complementary to
them. Although not directly related to reproducing 1-day vulnerabilities, there
are studies that use directed fuzzing to reproduce bugs from patches [23, 24],
which are complementary to our approach.

https://github.com/SoftSec-KAIST/LLM1dFuzz


Short paper: Systematic Bug Reproduction with Large Language Model 3

Input Generation with LLM. Recent research has been actively exploring
the use of LLMs to generate or modify program inputs for fuzzing. However,
they mainly focus on the LLMs’ ability to generate well-formed inputs to find
arbitrary bugs, while our study focuses on generating inputs specifically tailored
to known vulnerabilities. Asmita et al. [1] demonstrated the effectiveness of using
an LLM to generate diverse initial seeds. However, they primarily focused on
generating initial inputs that conform to the input format of the program by
simply providing the name of the program to the LLM. ChatAFL [15] leverages
an LLM to perform stateful fuzzing, but it does not utilize the information
provided in the prompts in subsequent prompts. Fuzz4All [21], similarly to our
technique, includes official documentation and related code in their prompts, but
it cannot be directly applied to reproducing known vulnerabilities.

3 Methodology

This section outlines the core methodology of our research, including a three-
stage prompting process and its specific design points. Figure 1 shows the tem-
plates of our three-stage prompts. Stage 1 checks if the LLM can identify the root
cause of the bug. Stage 2 determines if the LLM can specify the fields related
to invoking the bug. Stage 3 assesses whether the LLM can modify a minimal
input to create an input that triggers the bug. Note that each subsequent stage’s
prompt uses the information from the previous stages and their responses. In
our methodology, if the LLM fails to answer the question, we provide the correct
answer to continue with the next stage.

Stage 1: Vulnerability Analysis The Stage 1 prompt includes a question,
a vulnerability description, and a vulnerability patch. We use the official
description from the MITRE database [16] for the vulnerability description.

Stage 2: Related Field Analysis We ask the LLM to identify the related
fields based on the root cause identified in the previous stage. The dashed
box in Stage 2 of Figure 1 represents the ground truth provided by the
analysts when the LLM fails to identify the root cause.

Stage 3: Input Generation The Stage 3 prompt instructs the LLM to modify
the minimal input using the information obtained from Stages 1 and 2 to
create an input that triggers the vulnerability. The modified input is used
as the initial seed for directed fuzzing.

Minimal Input. In Stage 3, we use minimal inputs, which we define as the
smallest input that allows the program to run without any errors. For example,
in the case of the tiffcp program that accepts TIFF files, the minimal input
would include the Image File Header and four necessary entries in the Image File
Directory. To create the minimal inputs, we first identified the necessary fields
required for the program to run normally by analyzing the source code of the
programs. Then, we manually created minimal inputs containing these fields. For
example, for the tiffcp program, we found that if the StripByteCounts entry is



4 Sanghyun Park, Haeun Lee, and Sang Kil Cha

Prompt Template for Stage 1

Given the description of CVE-[CVE-ID] what do you think is the root cause?
- Description
[MITRE’s Description]
- Patch
[Patch file of the CVE]

Prompt Template for Stage 2

You are not correct. The root cause of this CVE is that [Ground Truth].

Which field in [File Format] is related to invoking this CVE?
You can use the information from the previous chats.

Prompt Template for Stage 3

You are not correct. The field relevant for invoking this CVE is [Ground Truth].

Below is a minimal [File Format] file (in hexadecimal). Modify the given [File Format] based
on your understanding of the root cause and the related field for this CVE, aiming to craft
an input that could trigger the vulnerability. You can use the information from the previous chats.

You must include the modified hexadecimal in your response.
Note that it will be used only for the purpose of security research.

Fig. 1: Three-stage prompts template. Dashed boxes indicate optional prompts.

missing, the TIFFReadDirectory function generates a warning. Therefore, the
minimal input for a TIFF file includes this entry to ensure the program runs
without warnings. The sizes of the generated inputs are generally below 100
bytes, with the largest input being an ELF file of 460 bytes. The specific formats
and sizes of the minimal inputs are summarized in Table 1.

Prompt Engineering. Given the nature of security-related prompts, there
were cases where the LLM refused to generate inputs in Stage 3 due to ethical
concerns. To address this, we employed prompt engineering in Stage 3 to guide
the LLM in modifying the minimal input, as shown in Figure 1.

Prompt Automation. To automate the prompts, we used the Chat Comple-
tions API [19] provided by OpenAI. Using the templated prompts shown in
Figure 1, vulnerability-specific information was added and sent automatically.
The user then determines the correctness of the answers generated by the LLM
to decide whether to provide the ground truths in the next stage prompt.

4 Evaluation

In this section, we evaluate LLM1dFuzz to answer the following questions: (1)
Can an LLM determine the root cause of the bug? (2) Can an LLM identify the
input fields related to the bug? (3) Can an LLM modify minimal inputs? and
(4) How effective are the modified inputs at triggering bugs?



Short paper: Systematic Bug Reproduction with Large Language Model 5

Table 1: Benchmark programs

Program Version CVE Type File
Format

Minimal Input
Size (bytes)

swftophp 0.4.7 2016-9827 BOF SWF 15
lrzip 0.631 2018-11496 UAF LRZ 46
xmllint 2.9.4 2017-9047 BOF XML 36
cjpeg 1.5.90 2018-14498 BOF BMP 58
cxxfilt 2.6 2016-4487 ND TXT 6
objcopy 2.8 2017-8393 BOF ELF 460
readelf 2.9 2017-16828 IO ELF 460
pngimage 1.6.35 2018-13785 IO PNG 67
tiffcp 4.0.7 2016-10269 BOF TIFF 63
sndfile-convert 1.0.28 2018-19758 BOF WAV 45
openssl 1.1.0c 2017-3735 BOF DER 201
lua 5.4.0 2020-24370 IO LUA 2
php 7.3.6 2019-11041 BOF JPEG 243
sqlite3 3.30.1 2019-19923 ND SQL 9
pdfimages 0.73.0 2019-7310 BOF PDF 137

4.1 Evaluation Setup

We selected 15 open-source programs that take 14 different file formats as in-
put as the benchmark for our evaluation. The programs were chosen from a
commonly used fuzzing benchmark [8] and benchmarks from previous directed
fuzzing papers [2,9,10]. We randomly selected one CVE for each program, result-
ing in a total of 15 vulnerabilities for the experiment, as summarized in Table 1.
We used GPT-4 Turbo [18] as the LLM. To mitigate the randomness of the LLM,
we repeated the experiment 10 times per program. The success of Stages 1 and
2 was determined by comparing the responses generated by the LLM with the
detailed answers about the vulnerabilities analyzed by our research team.

Considering that the LLM often does not modify the minimal input in Stage
3 for ethical reasons, the experiment was repeated up to 100 times until 10
modified inputs were generated. However, despite prompt engineering, the LLM
only returned partially modified inputs for the objcopy and readelf programs,
which take large and complex ELF structures as input, even after 100 prompts
in Stage 3. For these programs, we manually applied the partial modifications to
the minimal inputs, completing 7 and 10 initial seeds for fuzzing, respectively.

To evaluate the generated inputs, we used SelectFuzz (commit 6da35e0d) [13]
as a directed fuzzer and AFL++ (v4.07c) [7] as an undirected fuzzer. For each
program, 10 modified inputs were fuzzed five times for 24 hours each. We labeled
the inputs based on code coverage, identifying the highest and lowest, with the
rest randomized (e.g., random-1, random-2, ..., random-8). We ran the experi-
ments on a server machine with 88 Intel Xeon E5-2699 v4 (2.2GHz) CPU cores
and 512GB of memory. Each fuzzing session was run in an isolated Docker con-
tainer with one core and 4GB of memory assigned. A total of 40 fuzzing sessions
were run simultaneously, utilizing 40 out of the 88 logical cores.



6 Sanghyun Park, Haeun Lee, and Sang Kil Cha

Table 2: Result of each stages

sw
fto

ph
p

lrz
ip

xm
lli
nt

cj
pe

g
cx

xfi
lt

ob
jc
op

y

re
ad

el
f

pn
gi
m
ag

e

tiff
cp
sn

dfi
le
-c
on

ve
rt

op
en

ss
l

lu
a

ph
p

sq
lit

e3

pd
fim

ag
es

Stage 1 (# of Successes) 3 0 10 6 0 10 0 10 0 0 10 10 10 10 0

Stage 2 (# of Successes) 10 0 9 0 0 9 0 6 0 0 10 10 0 10 0

Stage 3 (# of Prompts) 43 10 12 10 13 100 100 17 24 21 100 15 16 10 10

4.2 Root Cause Analysis

Table 2 shows the evaluation results for each stage. Out of 15 programs, the
LLM successfully identified the cause of the vulnerability in more than half
of the attempts for 8 programs (53%). This shows the LLM’s ability to infer
the root cause of vulnerabilities based on the provided information and patch
details. Compared to manual analysis by humans, the high success rate of the
LLM suggests a high potential for vulnerability analysis.

The results showed that the majority of the LLM’s answers heavily relied on
the vulnerability descriptions and patch information provided in the prompts.
For instance, in the case of CVE-2018-11496, the LLM incorrectly accepted er-
roneous vulnerability information listed by MITRE and returned unrelated in-
formation as the root cause of the vulnerability. Similarly, for CVE-2016-4487,
multiple vulnerabilities were patched simultaneously in one commit, leading to
irrelevant information being included in the patch data provided to the LLM.
As a result, the LLM struggled to cherry-pick relevant information pertinent to
CVE-2016-4487 and failed to pinpoint the root cause. This highlights the im-
portance of providing accurate vulnerability information and patches to enhance
the inference capabilities of the LLM.

4.3 Related Fields Identification

In Stage 2, the LLM successfully identified the fields related to invoking the
vulnerability in more than half of the attempts for 7 out of 15 programs (46.7%).
It is remarkable that the LLM could identify related fields based on the small
amount of information provided in the prompts. This shows the potential for
higher success rates with more comprehensive training data in the future.

By analyzing the failure cases, we found that the LLM often struggled to
match variables in the patches to the corresponding input format fields. For
example, in the case of CVE-2019-11041, while the LLM recognized that the
Thumbnail->size variable in the patch was relevant to the vulnerability, it could
not match which field in the JPEG format corresponded to this variable. Addi-
tionally, when multiple fields were related to invoking a vulnerability, the LLM
frequently failed to identify all the relevant fields. For CVE-2016-10269, which



Short paper: Systematic Bug Reproduction with Large Language Model 7

Table 3: Fuzzing results of AFL++

LLM-generated Inputs

Minimal
Input

Best
Cov.

Worst
Cov.

Rand.
1

Rand.
2

Rand.
3

Rand.
4

Rand.
5

Rand.
6

Rand.
7

Rand.
8

swftophp 13(5) 14(5) 50(5) 15(5) 7(5) 21(5) 6(5) 13(5) 8(5) 8(5) 52(5)
lrzip 18(5) 4527(5) 2569(5) 1964(5) 4799(5) 4513(5) 2893(5) 1752(5) 5448(5) 1189(5) 1468(5)
xmllint N.A.(0) N.A.(0) N.A.(0) N.A.(0) 65393(4) N.A.(1) 76979(3) N.A.(0) N.A.(0) 77274(3) N.A.(0)
cjpeg 80769(3) 5487(4) N.A.(1) 25(5) 34405(4) 7175(5) 191(5) 30417(3) 11927(4) 31348(3) N.A.(2)
cxxfilt 1108(5) 581(5) 508(5) 172(5) 662(5) 895(5) 1366(5) 1633(5) 684(5) 1045(5) 817(5)
objcopy 1005(5) 1233(5) N.A.(1) N.A.(2) N.A.(2) N.A.(0) N.A.(2) N.A.(2) - - -
readelf N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0)
pngimage N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0)
tiffcp N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0)
sndfile-convert N.A.(0) 227(5) 76(5) 674(5) 192(5) 12(5) 426(5) 7(5) 20(5) 537(5) 490(5)
openssl N.A.(0) N.A.(0) - - - - - - - - -
lua N.A.(0) 13558(5) N.A.(0) 44(5) 174(5) 0(5) N.A.(0) 69(5) 17267(4) 3385(5) 51(5)
php 2839(5) 9873(5) N.A.(2) N.A.(1) 30820(3) 13772(4) 6318(4) N.A.(2) 34252(4) N.A.(2) 59757(4)
sqlite3 N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0)
pdfimages N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0)

required three fields to trigger the vulnerability, the LLM only identified one of
them. This shows that the LLM has difficulties in matching variables in the code
to input format fields and identifying multiple related fields.

4.4 Modification of Minimal Inputs

In Stage 3, the LLM successfully generated 10 modified inputs for 12 out of 15
programs (80%). However, despite prompt engineering efforts (§3), there were
cases where the LLM refused to modify the minimal inputs due to ethical con-
cerns. For instance, for CVE-2017-3735, which takes DER files as its input for-
mat, only one modified input was generated after 100 prompt attempts. The
LLM also failed to generate ELF files, which have complex structures, even af-
ter 100 prompts. Conversely, vulnerabilities with relatively simple input formats
yielded 10 modified inputs within about 30 prompts. This indicates that the
model has difficulty modifying the minimal inputs for programs with complex
and lengthy input formats.

4.5 Effectiveness of Generated Inputs

Table 3 and Table 4 reveal the fuzzing results using inputs generated by the
LLM as initial seeds. The numbers represent the median time taken to find the
vulnerability (i.e., Time-to-Exposure (TTE)), where "N.A." denotes that the
vulnerability was not found within the 24-hour time limit in more than half of
the repetitions. The parentheses denote the number of successful repetitions out
of 5, where the results marked with a dash (-) indicate that the fuzzer failed to
perform static analysis, which made fuzzing infeasible.

There was a promising result when fuzzing lua with random-3 input as the
initial seed. The vulnerability was triggered immediately, indicating that the
LLM succeeded in generating the text-formatted input using the detailed vul-
nerability descriptions and patches.



8 Sanghyun Park, Haeun Lee, and Sang Kil Cha

Table 4: Fuzzing results of SelectFuzz

LLM-generated Inputs

Minimal
Input

Best
Cov.

Worst
Cov.

Rand.
1

Rand.
2

Rand.
3

Rand.
4

Rand.
5

Rand.
6

Rand.
7

Rand.
8

swftophp 45(5) 13(5) 983(5) 50(5) 27(5) 20(5) 21(5) 41(5) 18(5) 17(5) 690(5)
lrzip 15(5) 7065(5) 20796(5) 2043(5) 3327(5) 5923(5) 803(5) 1805(5) 11581(5) 5870(5) 1751(5)
xmllint N.A.(0) N.A.(1) N.A.(0) N.A.(0) N.A.(1) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0)
cjpeg 32520(3) 100(5) N.A.(0) 37(5) 187(5) 704(5) 42(5) 276(5) 220(5) N.A.(0) N.A.(0)
cxxfilt 695(5) 649(5) 1242(5) 498(5) 1048(5) 514(5) 965(5) 1216(5) 1077(5) 753(5) 1163(5)
objcopy 1392(5) 3006(5) N.A.(1) N.A.(1) N.A.(0) N.A.(0) N.A.(2) N.A.(0) - - -
readelf - - - - - - - - - - -
pngimage N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0)
tiffcp N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0)
sndfile-convert N.A.(0) N.A.(0) N.A.(0) N.A.(0) 354(5) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0)
openssl - - - - - - - - - - -
lua N.A.(0) 1099(5) N.A.(0) N.A.(1) N.A.(1) 0(5) N.A.(0) N.A.(0) 853(5) 2228(5) 1616(5)
php - - - - - - - - - - -
sqlite3 N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0)
pdfimages N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0) N.A.(0)

When fuzzing with the LLM-generated inputs as initial seeds, AFL++ and
SelectFuzz succeeded in reproducing the vulnerability faster for 33% (5/15) and
42% (5/12) of the programs, respectively, compared to using minimal input
values. Except for the lrzip case, the inputs generated by the LLM improved
fuzzing performance for programs with small minimal inputs, such as BMP and
WAV. However, it was found to be less effective for modifying complex input
formats like ELF and DER. This is because, despite knowing the fields related
to invoking the vulnerability, it was challenging to determine which part of the
minimal input represented in hexadecimal corresponded to those fields. In the
cases of CVE-2017-16828 and CVE-2017-3735, the LLM modified arbitrary fields
in the input file for illustrative purposes, ignoring the file format complexity.

For lrzip, it is suspected that the lack of information on the input format
likely hindered the model’s learning process. In fact, we found the LLM modify-
ing fields unrelated to the vulnerability in lrzip. Additionally, it was observed
that high code coverage of inputs does not necessarily enhance fuzzing perfor-
mance. There were several inputs with lower code coverage that showed better
fuzzing performance than those with high code coverage.

5 Conclusion

This paper discusses how LLMs can assist in generating inputs that trigger
specific vulnerabilities. Although we did not achieve successful results for all
programs, it is significant to find that LLMs can be utilized in 1-day vulnerability
analysis and aid in generating inputs that trigger vulnerabilities.

Acknowledgements. This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (RS-2021-II210177, 2021-0-00177, High Assurance of
Smart Contract for Secure Software Development Life Cycle).



Short paper: Systematic Bug Reproduction with Large Language Model 9

References

1. Asmita, Scott, Y.O.M., Tsang, R., Fang, C., Homayoun, H.: Fuzzing BusyBox:
Leveraging llm and crash reuse for embedded bug unearthing. In: Proceedings of
the USENIX Security Symposium (2024)

2. Böhme, M., Pham, V.T., Nguyen, M.D., Roychoudhury, A.: Directed greybox
fuzzing. In: Proceedings of the ACM Conference on Computer and Communi-
cations Security. pp. 2329–2344 (2017)

3. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Win-
ter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J.,
Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language mod-
els are few-shot learners. In: Advances in Neural Information Processing Systems.
pp. 1877–1901 (2020)

4. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: Proceedings of the USENIX
Symposium on Operating System Design and Implementation. pp. 209–224 (2008)

5. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing mayhem on binary
code. In: Proceedings of the IEEE Symposium on Security and Privacy. pp. 380–
394 (2012)

6. Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H.P., Kaplan, J.,
Edwards, H., Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger,
G., Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N.,
Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter, C., Tillet, P., Such, F.P.,
Cummings, D., Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A., Guss,
W.H., Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I., Balaji, S., Jain,
S., Saunders, W., Hesse, C., Carr, A.N., Leike, J., Achiam, J., Misra, V., Morikawa,
E., Radford, A., Knight, M., Brundage, M., Murati, M., Mayer, K., Welinder, P.,
McGrew, B., Amodei, D., McCandlish, S., Sutskever, I., Zaremba, W.: Evaluating
large language models trained on code. In: arXiv preprint arXiv:2107.03374 (2021)

7. Fioraldi, A., Maier, D., Eißfeldt, H., Heuse, M.: AFL++ : Combining incremental
steps of fuzzing research. In: Proceedings of the USENIX Workshop on Offensive
Technologies (2020)

8. Hazimeh, A., Herrera, A., Payer, M.: Magma: A ground-truth fuzzing benchmark.
Proceedings of the ACM on Measurement and Analysis of Computing Systems
4(3), 1–29 (2020)

9. Huang, H., Guo, Y., Shi, Q., Yao, P., Wu, R., Zhang, C.: Beacon: Directed grey-
box fuzzing with provable path pruning. In: Proceedings of the IEEE Symposium
on Security and Privacy. pp. 36–50 (2022)

10. Kim, T.E., Choi, J., Heo, K., Cha, S.K.: DAFL: Directed grey-box fuzzing guided
by data dependency. In: Proceedings of the USENIX Security Symposium. pp.
4931–4948 (2023)

11. Kim, T.E., Choi, J., Im, S., Heo, K., Cha, S.K.: Evaluating directed fuzzers: Are
we heading in the right direction? In: Proceedings of the International Symposium
on Foundations of Software Engineering (2024)

12. Lee, H., Yang, H.D., Ji, S.G., Cha, S.K.: On the effectiveness of synthetic bench-
marks for evaluating directed grey-box fuzzers. In: Proceedings of the Asia-Pacific
Software Engineering Conference. pp. 11–20 (2023)



10 Sanghyun Park, Haeun Lee, and Sang Kil Cha

13. Luo, C., Meng, W., Li, P.: SelectFuzz: Efficient directed fuzzing with selective path
exploration. In: Proceedings of the IEEE Symposium on Security and Privacy. pp.
2693–2707 (2023)

14. Ma, K.K., Khoo, Y.P., Foster, J.S., Hicks, M.: Directed symbolic execution. In:
Proceedings of the International Static Analysis Symposium. pp. 95–111 (2011)

15. Meng, R., Mirchev, M., Böhme, M., Roychoudhury, A.: Large language model
guided protocol fuzzing. In: Proceedings of the Network and Distributed System
Security Symposium (2024)

16. MITRE Corporation: CVE-MITRE. https://cve.mitre.org
17. Mu, D., Cuevas, A., Yang, L., Hu, H., Xing, X., Mao, B., Wang, G.: Understanding

the reproducibility of crowd-reported security vulnerabilities. In: Proceedings of the
USENIX Security Symposium. pp. 919–936 (2018)

18. OpenAI: GPT4-Turbo. https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4

19. OpenAI: OpenAI Platform. https://platform.openai.com/docs/overview
20. Peng, J., Li, F., Liu, B., Xu, L., Liu, B., Chen, K., Huo, W.: 1dVul: Discovering

1-day vulnerabilities through binary patches. In: Proceedings of the International
Conference on Dependable Systems and Networks. pp. 605–616 (2019)

21. Xia, C.S., Paltenghi, M., Tian, J.L., Pradel, M., Zhang, L.: Fuzz4All: Universal
fuzzing with large language models. In: Proceedings of the International Conference
on Software Engineering (2024)

22. Yang, S., He, Y., Chen, K., Ma, Z., Luo, X., Xie, Y., Chen, J., Zhang, C.: 1dFuzz:
Reproduce 1-day vulnerabilities with directed differential fuzzing. In: Proceedings
of the International Symposium on Software Testing and Analysis. pp. 867–879
(2023)

23. Zhang, J., Cui, Z., Chen, X., Yang, H., Zheng, L., Liu, J.: Cidfuzz: Fuzz testing for
continuous integration. IET Software 17(3), 301–315 (2023). https://doi.org/
https://doi.org/10.1049/sfw2.12125

24. Zhu, X., Böhme, M.: Regression greybox fuzzing. In: Proceedings of the ACM
Conference on Computer and Communications Security. pp. 2169–2182 (2021).
https://doi.org/10.1145/3460120.3484596

https://cve.mitre.org
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/overview
https://doi.org/https://doi.org/10.1049/sfw2.12125
https://doi.org/https://doi.org/10.1049/sfw2.12125
https://doi.org/https://doi.org/10.1049/sfw2.12125
https://doi.org/https://doi.org/10.1049/sfw2.12125
https://doi.org/10.1145/3460120.3484596
https://doi.org/10.1145/3460120.3484596

	Short paper: Systematic Bug Reproduction with Large Language Model

