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Abstract—Shooting is a common activity all over the world for

both military and recreational purposes. Shooting performance

can be measured from the size of the shot group (grouping).

Shooters have been calculating the size of the group by measuring

the distance between bullet impacts using their hands. This

paper aims to create a reasonable automated shot grouping

size measuring module that is available from several kilometers

away. It includes an IoT(Internet of Things) system and a mobile

application that users can access. LoRa technology is adopted for

covering long distances, and YOLO V5 is implemented to detect

bullet impacts. Mathematical methods for calculating accurate

distance and engineering techniques to fill the needs are described

with experiments on various parameters and conditions. The

proposed module showed that indoor tests measured the shot

group with a mean accuracy of 91.8%. For future work, outdoor

tests, which were affected by environmental control variables,

are expected to give better accuracy.

Index Terms—Shot Group, LoRa, YOLO V5, Bluetooth, Edge

Computing, IoT

I. INTRODUCTION

In recent years, shooting has become a popular hobby
forming a large industry as well as being one of the core
activities in the military. Approximately American civilians
own 393 million guns, and the Gun & Ammunition market
size has reached 15 billion dollars in 2021 [1], [2]. Naturally,
there is a high demand for measuring shooting performance
to improve one’s shooting skills. A shooter’s performance can
be derived from the Shot Group. The term ‘Shot Group’ is
generally understood to mean the pattern of bullet holes fired
on a target in one shooting session. How closely the impacts
are clustered is an indicator of the precision of a weapon and
shooter, whereas how close the bullet impacts are to a specific
point is an indicator of the accuracy [3], [4].

One of the current limitations of gauging shooting perfor-
mance is that shooters have to use their hands to measure
their group size. It means they have to go all the way to their
target to retrieve it, then measure the size of their shot group
or count up their scores manually. Technology can overcome
this limitation, particularly by using long-range networking
and object detection, as this allows the shooter to check
their target, regardless of distance. Specifically, long-range

networking allows shooters to get the bullet impact coordinates
with actual target images, while object detection yields the
location of bullet impacts. Despite there being various methods
to get the locations (e.g., acoustic nodes and impact sensors),
they have their limitations. Acoustic nodes can have difficulty
detecting subsonic rounds and are liable to experience damage
from gunshots. Impact sensors are accurate and durable, but
expensive.

This paper proposes a shooting performance measuring
module, which scores a user’s performance based on the
tightness of their shot group. The proposed module focuses
on LoRa as a wireless network, coordinates, and image
transmission protocol for the privilege of long-range covering
and low-power consumption. Bluetooth is used for near data-
sharing giving bullet impact coordinates and actual target
images to the user application. In order to get the coordinates
of bullet impacts, this module includes YOLO V5 customizable
object detection model. OpenCV is applied to make the target
image upright, while the user application does mathematical
work to calculate the shot group size. Putting all these together,
the system allows shooters to automatically measure their shot
group from a distance without the need to retrieve targets.
Moreover, it also gives the actual target image with substantive
bullet impacts to help the shooters.

II. RELATED WORK AND MOTIVATION

Several systems such as Shot Marker, Ballistic Precision, and
Kongsberg targets have emerged to overcome the limitations
of shot group measuring, yet all have their shortcomings or
are expensive. This section describes the brief motivations
for LoRa, Object Detection, and Bluetooth technologies by
comparing existing systems with the proposed approach.

Shot Marker is an interactive feedback system on the mobile
device at any range, giving shooters the impact points and
shot group size [5]. This system is composed of a LoRa
module, acoustic nodes, and an access point that uses local
Wi-Fi. LoRa module is for its low battery consumption and
ability to transmit data several kilometers. Acoustic nodes
are 8 high-precision microphones installed on the frame to
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find the locations of bullet impacts. Although an error range
of sensors is less than 1 mm in ideal conditions, it highly
depends on external physical factors such as the straightness
of the frame, the movement of the sensors, and the winds
[5]. Also, this system requires the user to manually zero their
shots before a shooting session in order to adjust the acoustic
nodes. Moreover, if the bullet is slower than a gunshot sound
(subsonic), the acoustic nodes cannot detect the impact points
due to the interference between gunshot and passing sound.
Power consumption is another limitation of this system. This
system utilizes local Wi-Fi at the access point which consumes
lots of power. In comparison to Shot Marker, the proposed
system uses Custom YOLO V5 to find the bullet impacts,
regardless of bullet speed, while taking the advantages of
LoRa long range. Bluetooth is used at the access point instead
of Wi-Fi in order to reduce power consumption.

Ballistic Precision provides real-time streaming video up
to 1.6 km with Wi-Fi [6]. The system consists of a camera
for video streaming and two semi-directional antennas using
Wi-Fi for communication. However, a distinct disadvantage is
that Wi-Fi uses more power between the target and user. Also,
this product lacks a module for detecting bullet impacts, only
streaming the target image from distances. Ballistic Precision,
however, shows the actual target with substantive bullet impacts.
This approach is similarly applied to the proposed system,
enabling users to check their genuine target from distances.

Kongsberg targets is an electronic target system that uses
impact sensors. It includes an electronic target, a monitor, a
signal distributor, and a power supply [7]. With the impact
sensors, this product gets the most accurate impact points
among all of the existing systems. Also, impact sensors handle
both super and subsonic ammunition as the proposed system
does. Yet, Kongsberg targets cannot cover a wide range and
requires stable power. Above all, it is expensive as impact
sensors cost more than one thousand U.S. dollars.

Previous works suffer from high-power consumption by
using Wi-Fi. One system meets difficulty detecting subsonic
ammunition, while others lack a shot group measurement
module.
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Fig. 1. Block Diagram of Proposed Module

III. PROPOSED SYSTEM

A. Hardware Devices
The proposed system as shown in Fig. 1 contains the

following components: 2 Raspberry Pi 4 B 4GB, Android
Device, 2 Dragino LoRa/GPS Hats, HQ Raspberry Pi Camera
Module with a Wide Angle CS-Mount lens, LMV324 Sound
Detector Sensor. One of the two Raspberry Pis has a Pi Camera
attached for capturing target images, referred to as RPi-1. The
other Raspberry Pi is connected to a sound sensor to detect
gunshots while connecting with a user application via built-in
Bluetooth, referred to as RPi-2. Each LoRa Hat acts as a point-
to-point transceiver for signals, target numbers, coordinate
data, and images. A nano hacker is inserted between RPi-2
and LoRa Hat in order to connect the sound sensor directly to
RPi-2.

B. LoRa
Since the proposed model plans for shootings from any

distance, it was necessary to have a wireless network that
replaces cabled networks. LoRa is a wireless network protocol
that is designed for the low-power transmission of small IoT
sensor data over distances. Adopting this network technology
enables the system to efficiently transmit and receive small
data (e.g., signals, coordinates) from distances.

Despite its long-range coverage and low-power consumption,
LoRa suffers from major drawbacks: low data rate, payload
size, and duty cycle limit [8]–[10]. Accordingly, the proposed
system overcomes the downsides of LoRa technology by using
compression to reduce the size of the transmitted data as much
as possible. Applying image warping and compression shrinks
the image to be at most 150 times smaller than before, enabling
faster image transmission. In addition, this system sends the
actual image only at the end of the shot session, reducing the
burden of LoRa. While several wireless network protocols can
cover long-range with minimal power, LoRa became the most
feasible technology for this application.

C. Bluetooth
Bluetooth is used as the shooter’s end of the proposed

system. While most user devices such as smartphones and
laptops lack a LoRa module, Bluetooth is a common feature.
This allows Bluetooth to be the bridge between RPi-2 and the
user device. Bluetooth consumes low battery power, making
IoT systems with limited batteries last longer [11]. This paper
attempted to maximize its power efficiency even more by
minimizing the idle time of the Bluetooth socket. For each
distinct communication between RPi-2 and the user application,
a new socket connection is established to reduce the idle time
of the Bluetooth socket, reducing power consumption.

D. Edge Computing
Since cloud computing requires the target image to be sent

to the cloud server for each bullet impact detection, the need
for edge computing emerged in order to reduce the burden
of LoRa’s low data rates. In this study, RPi-1 acquires the
image of the target. It then arranges the image and runs the



object detection program without the need to send the actual
target image to a cloud server. In order to do this, the 64-
bit Raspbian Operating System, PyTorch, and OpenCV are
installed on RPi-1.

E. OpenCV
Not only are there targets of different sizes and ranges that

can be selected for shooting, but also the images of the target
from the camera are warped depending on the location and the
angle of the camera. The camera is installed next to the target
and takes photos at an angle making the image to be oblique.
When measuring the size of a shot group, there should be
a consistent coordinate calculation standard, such as a clear,
direct reference photo of the target taken directly in front of it.
In order to make a frontal image, computer vision techniques
are used for image feature matching, such as Oriented FAST
and Rotated BRIEF (ORB) and Random Sample Consensus
(RANSAC).

ORB finds the key points and descriptors using feature
matching, which is faster than Speeded Up Robust Features
(SURF), and over twice as fast as Scale Invariant Feature
Transform (SIFT) [12]. The key points and descriptors found
from the two images are matched using a brute force algo-
rithm. The RANSAC algorithm for object tracking and video
stabilizing chooses maximum consensus by random sample
methods [13]. This system computes the matrix that transforms
the captured image to match the reference image since image
warping requires only one matrix as shown in Fig. 2.

Fig. 2. Feature Matching Result of Reference and Captured Images

F. YOLO V5
Existing target systems based on electronic sensors and

acoustic nodes both have their shortcomings. Electronic sensors
have a high price, usually more than one thousand dollars,
with sound sensors having difficulties detecting subsonic shots
and lacking visual feedback. While requiring some tuning to
get precise results, object detection with a camera can be a
fine alternative to detect bullet impacts.

In the area of object detection, the YOLO series has proved
an improvement in speed and accuracy. YOLO V5 achieves

140 FPS compared with the 50 FPS of YOLO V4 [14], [15].
It can train the new model to detect bullet impacts using
a customized Common Objects in Context (COCO) dataset.
YOLO V5 has several models, among which the nano model
has fast speed and low accuracy compared to other models.
Because the proposed system utilizes a Raspberry Pi with low
processing power to run YOLO V5, it uses the nano model.
YOLO V5 finds the coordinates from the warped image by
processing it with computer vision techniques.

G. Extreme Spread Measure

There are several methods to calculate group sizes, such
as the extreme spread, the figure of merit, the diagonal, the
mean radius, and the radial standard deviation [16]. Among all
of them, the extreme spread method is the most widely used
measure of shot group dispersion [16]. This method calculates
the size of the group using the maximum distance between
the center of any two shots within the group.

IV. IMPLEMENTATION

A. Data Communication

1) Signal Transmission: Signals are triggers to activate the
features of the proposed system. The signals include capture
signals, finish session signals, and shutdown signals. The
capture signal makes RPi-1 activate the camera and start bullet
impact detection, while the finish session signal requests RPi-
1 to capture and send the image of the actual target. The
shutdown signal turns off the power of both RPi-1 and RPi-2.
When every gunshot is heard, a capture signal is sent from
RPi-2 to RPi-1. Other signals are sent from the user application
and are relayed from RPi-2 to RPi-1.

2) Coordinate Transmission: Coordinate data are produced
in RPi-1 as the result of bullet impact detection. They are sent
to RPi-2 in a single byte string form through LoRa. RPi-2
then transmits the coordinates to the user application in the
form of ASCII encoded bytes. ASCII encoding makes the
application easy to parse the received coordinate data into
each coordinate. In order to help the user application indicate
the end of coordinate data, an exclamation mark is appended
at the end of the transmitted data.

3) Image Transmission: Prior to actual target image trans-
mission, RPi-1 warps and compresses the image. The com-
pressed image file is read and then encoded into the Base64
format, representing a compressed binary image file in an
ASCII string format [17]. It is chosen as the encoding method
for its compatibility with the format of LoRa transmission
[18]. The encoded data is fragmented into packets with 253-
byte payloads. While RPi-1 sends the packets, RPi-2 receives
each packet in sequences. After transmitting the final packet,
RPi-1 sends an extra packet containing the EOF flag. RPi-2
indicates the end of transmission through the EOF flag, after
which it starts to reconstruct the image by decoding the given
data. Considering the possibility of the EOF packet loss, RPi-1
sends ten equal packets while RPi-2 only needs to receive
one of them. For image transmission from RPi-2 to the user



application, it utilizes ObexFTP for the convenience of file
image transfer.

B. Image Processing
1) Image Capturing: RPi-1 takes a picture of the actual

target whenever the gunshot occurs. To remove unnecessary
color channels when finding the warping matrix, RPi-1 converts
the color space of both the target and reference image from
BGR to gray.

2) Image Warping: With the target image taken, and the
reference image stored, ORB extracts the features of the images.
Then, RANSAC is applied to find the matrix for image warping.
The image of the actual target is warped using the matrix.

3) Bullet Impact Detecting: In order to train the new model,
the dataset is built with 260 target images (214 for training and
46 for validation) and 2,578 labels. The trained nano model
achieved 0.62 mean Average Precision (mAP).

Algorithm 1 Shot Group Size Calculation Algorithm
Require: n � 2
Ensure: dmax 0

for i = 0! Points.length� 2 do

for j = i+ 1! Points.length� 1 do

(xi, yi) Points[i]
(xj , yj) Points[j]

d 
q
(xi � xj)

2 + (yi � yj)
2

if d > dmax then dmax d
end if

i i+ 1
j  j + 1

end for

end for

C. User Application
1) Bullet Impact Drawing: During the shooting session, the

user application receives ASCII encoded coordinates of bullet
impacts in String format. It then parses the received String
data into each coordinate. From the parsed coordinates, the
user application draws bullet impacts on the reference target
image, as well as displays the total number of shots fired in
the current session.

2) Group Size Measuring: The proposed system uses the
extreme spread method to compute the size of the shot
group. The result of object detection, which is the coordinate
information, is sent to a user device through the LoRa and
Bluetooth network every shot. When the shooter finishes their
set, the user application applies Euclidean distance among
every point, as shown in Algorithm 1. It finds the maximum
Euclidean distance by traversing a double loop.

3) Scale Conversion: Since RPi-1 provides coordinates as
pixel units, there is a difference between the distance from
the actual target image and the distance calculated from the
two coordinates. In order to find the actual distance between
the two coordinates, Scale Conversion is applied by using a
letter-size target image that is already registered in the user

application. It has its own height and width measured as pixel
units. As the actual height and width, the ratio of centimeters
per pixel can be calculated automatically, by multiplying the
distance by the actual ratio. The end-users get the centimeter
values of the measured shot group.

V. RESULTS AND DISCUSSION

In order to prove the proposed system’s functionality,
several tests have been conducted indoors and outdoors. The
assumption of the indoor experiments includes the constant
brightness of light with a fixed target, stable room temperature,
and tranquil surroundings (i.e., A frequent recommendation
is a stable temperature no higher than 70°F and a tranquil
relative noise level no higher than 30 dB).

A. Test Scenario
The target images used for reference are stored on an

Android device as well as RPi-1 in order to utilize image
warping. When the shooter selects the target image on the
Android device, a message including the reference image’s ID
is sent to RPi-2 through Bluetooth networking. The message
is then transferred using LoRa from RPi-2 to RPi-1 to set
the reference image in RPi-1. If the signal arrives at RPi-1, it
sends back an ACK message to the Android device via RPi-2.
The ACK activates the sound sensor in order to detect gunshot
sounds.

Once the ACK passes RPi-2, it detects a number of sounds
equal to the specified rounds in the set. Whenever the sound
sensor detects a gun firing, RPi-2 sends a capture signal, the
image processing signal, to RPi-1. Upon receiving the signal,
RPi-1 starts the procedures to compute the coordinates of
bullet impacts. Detecting the impact points proceeds in the
order of taking a picture, warping the image, and applying
object detection to the warped image. Then, RPi-2 receives the
calculated coordinates through LoRa, relaying the information
to the Android device through Bluetooth. On the mobile device
screen, it draws the bullet marks using received data.

When the shooter has fired all rounds, the shooter clicks
the finish button to measure the shot group. The Android
device finds the maximum distance line between all of the
bullet coordinates and displays the computed extreme spread
length. Also, Android sends a finish session signal to RPi-1,
asking for the warped actual target image. The warped image
is compressed and then broken down into tiny packets so that
it can be sent by LoRa. The scenario ends when the user
receives the image sent from RPi-1 to the Android device.

B. Indoor Tests
The RPi-1 made up of the camera and LoRa was installed

in front of the target to take a picture of the letter size (21.59 x
27.94 cm) target. The RPi-2, including the sound detector and
LoRa, was placed next to the shooter in a straight line with
RPi-1. These two Raspberry Pis were set 15 m apart. In the
experiments, a screwdriver was used to make bullet impacts
on the target, making holes similar to the ones of 5.6 mm
caliber bullets. Similarly, a hand clap was used to simulate
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Fig. 3. Results of Indoor Tests

gunfire, activating the sound detector. Fig. 3 shows one of the
results of indoor tests, displaying a captured image, an image
detected bullet hole after warping, and an application page
after one shooting session.

As indoor tests were conducted in a stable test environment,
there were no interrupts such as other image features and
shadows making the target image to be warped unexpectedly,
nor winds and shot impacts moving the targets from their
origin placement. The sound detector intentionally triggered
RPi-1 via hand clap.

Fig. 4. RPi-1 (left) & RPi-2 (right)

C. Outdoor Tests
The outdoor tests were conducted on a tree farm in Romney,

Indiana, USA, from 4:00-6:00 PM EST. The proposed module
was set as shown in Fig. 4. The Raspberry Pis and the target
settings of outdoor tests were the same as the indoors. The
distance between two Raspberry Pis was 15 m. In these tests,
9 mm bullets were fired from 15 m away.

In the first outdoor experiment, we found that the sound
detector was more sensitive than expected. Without adjustment,
various noises (e.g., reload noise, conversation noise) could
activate RPi-1 accidentally. To alleviate this, resistors are
utilized to lower the gain of the sound detector in order to
make it less sensitive. The sound detector with a 10k⌦ resistor
installed detected the gunshot with and without a silencer,

whereas a 2.2k⌦ resistor only detected the gun without a
silencer. By populating a 10k⌦ resistor, surrounding noises
were filtered while suppressed shots were accepted. Also, the
target had a background that confused the image matching
algorithms. Due to the features behind the target, the captured
image warped poorly, detecting none of the bullet impacts.
YOLO V5 couldn’t detect bullet holes and calculate coordinates
from the mess image. As a result, the mobile application didn’t
draw any impact.

����

Fig. 5. Results of the Second Outdoor Test

We removed the object behind the target to make the system
work properly in the second outdoor test. However, there were
several unconsidered control variables such as tree shadows,
irregular wind directions, or target moves after shot impacts,
making unintended results. Due to the branches swaying in
the wind, image processing was imperfect. Instead of a frontal
image, the warped image was sheared, producing the wrong
coordinates. Fig. 5 shows the overall results of the outdoor
test, with the imperfectly warped image.

D. Percent Accuracy
For the evaluation of conducted tests, the Percent Accuracy

(PA) formula was used to prove the accuracy of the proposed
system. The measured and actual shot group size was noted
as DistResult and DistActual, respectively. Percent Accuracy
of the test results was derived by Percent Error (PE), while
PE was calculated as below:

PA(%) = 100� PE (1)

PE(%) =
|DistResult �DistActual|

DistActual
⇥ 100 (2)

Applying the percent accuracy formula, the best result of
indoor tests gave a percent accuracy of 99.8%, meaning that
the percent error of actual and result distances is only 0.2%.
The accuracy of these indoor experiments is described with
mean and standard deviation (SD) in Table I.

Unfortunately, the first outdoor test had difficulties getting
a well-warped image, which affected the trained YOLO V5
model detect none of the two bullet impacts. Two bullet impacts
out of five were detected in an imperfect warped image on the
second outdoor test. The YOLO V5 gave incorrect coordinates



TABLE I
ACCURACY TABLE OF INDOOR EXPERIMENTS

Trial DistResult(cm) DistActual(cm) PA(%)

1 13.2 11.2 81.8
2 14.7 14.4 98.4
3 10.5 10.8 97.4
4 12.4 12.4 99.8
5 8.84 9.88 89.5
6 11.2 10.4 92.5
7 13.5 13.0 96.3
8 8.59 9.80 87.6
9 11.7 10.9 92.3

10 10.6 12.9 82.4
Mean 11.5 11.6 91.8

SD 1.97 1.53 6.42

of the detected bullet holes, leading to a meaningless value of
percent accuracy.

E. Discussion

Given the results of indoor tests, the proposed system proved
to measure shot group size with a high mean accuracy of 91.8%.
Although the first trial (Trial 1) gave the least-accurate results,
the cause was found to be the margin on the top of the warped
image as shown in Fig. 3, and is expected to give better results
with a fully warped image. It is especially notable that the
trained object detection model succeeded in recognizing bullet
holes with high accuracy despite the image distortion caused
by feature matching.

Additionally, the outdoor test results required improvements
in the test environments. Several factors disturbing the target
image from being warped upright were found to be as follows:
tree shadows, features behind the target, movements of the
target, winds, and noises. Tree shadows found to disturb both
image warping and bullet impact detection. Outdoor tests with
controlled variables are expected to give better results with
high accuracy.

VI. CONCLUSION

This paper presents a long-range accessible, long-lasting
shot group measuring IoT system to check the shooter’s
performance from distances. By adopting LoRa and Bluetooth
technologies, we successfully fulfilled the initial system
requirements. We detected the bullet impacts of the target
using YOLO V5 by making the oblique target image upright
with computer vision techniques such as ORB and RANSAC.
With several tests from various environments conducted, we
showed the feasibility of an accurate shot group measuring
system.

However, there were several limitations to our research.
In this system, the camera is set up fixed in front of the
target. With indoor tests that target distances differ by some
rounds, this system would have difficulty matching the target
features, leading to inaccurate detection. Unfortunately, the
student group working on the system had to return to their

home country at the end of their time as visiting scholars, so
test results and system improvements were not feasible.

For future works, additional tests that are conducted outdoors
in an as similar environment as indoors are recommended to
increase the accuracy of image warping and ultimate shot group
measurement. While this system is only in the scope of LoRa
peer-to-peer communication, it could expand to a large-scale
network (e.g., LoRaWAN). As scaling up the network, we
expect our systems to be connected to a central server, storing
and comparing each shooter’s performance with analysis.
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